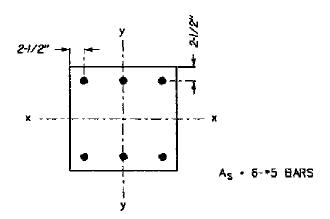
APPENDIX F

AXIAL LOAD WITH BIAXIAL BENDING - EXAMPLE

F-1. In accordance with paragraph 4-5, design an 18- by 18-inch reinforced concrete column for the following conditions:

 $f_c' = 3,000 \text{ psi}$

 $f_{v} = 60,000 \text{ psi}$


 $P_{\rm u}$ = 100 kips, $P_{\rm n}$ = $P_{\rm u}/0.7$ = 142.9 kips

 $M_{\rm ux}$ = 94 ft-kips, $M_{\rm nx}$ = $M_{\rm ux}/0.7$ = 134.3 ft-kips

 $M_{\rm uv}$ = 30 ft-kips, $M_{\rm nv}$ = $M_{\rm uv}/0.7$ = 42.8 ft-kips

Let concrete cover plus one-half a bar diameter equal 2.5 in.

F-2. Using uniaxial design procedures (Appendix E), select reinforcement for $P_{\rm n}$ and bending about the x-axis since $M_{\rm nx} > M_{\rm ny}$. The resulting cross-section is given below.

F-3. Figures F-1 and F-2 present the nominal strength interaction diagrams about x and y axes. It is seen from Figure F-2 that the member is adequate for uniaxial bending about the y-axis with $P_{\rm n}$ = 142.9 kips and $M_{\rm ny}$ = 42.8 ft-kips. From Figures F-1 and F-2 at $P_{\rm n}$ = 142.9 kips:

 $M_{\rm ox}$ = 146.1 ft-kips

 M_{ov} = 145.9 ft-kips

EM 1110-2-2104 30 Jun 92

For a square column, must satisfy:

$$(M_{\rm nx}/M_{\rm ox})^{1.75} + (M_{\rm ny}/M_{\rm oy})^{1.75} \le 1.0$$

 $(134.3/146.1)^{1.75} + (42.8/145.9)^{1.75} = 0.98 < 1.0$

If a value greater than 1.0 is obtained, increase reinforcement and/or increase member dimensions.

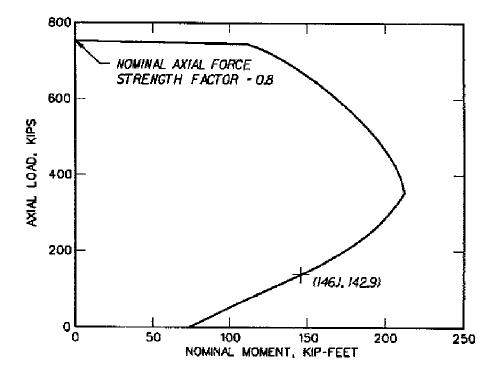


Figure F-1. Nominal strength about the X-axis

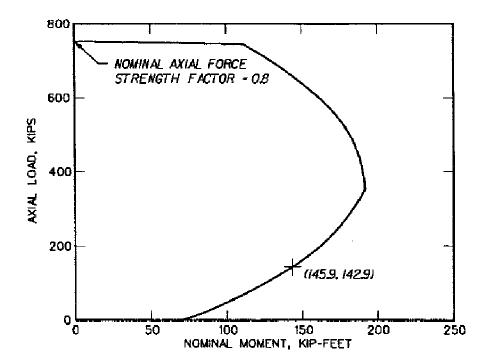


Figure F-2. Nominal strength about the Y-axis